Please support the Ministry’s public relations work: We need your consent to be able to measure your user activity on our website using etracker. A pseudonymised evaluation of this data by etracker helps us to improve our website. You can revoke your consent at any time for the future. Once you have made your selection, the consent management screen will appear at the bottom of the page. You can use this to stop or to reactivate the statistical evaluation at any point. You can reactivate tracking by dragging the slider in the opposite direction.
This website sets temporary session cookies. These are strictly necessary and therefore cannot be deselected. Their sole purpose is to enable you to use the website.
How does etracker work? A script on our website triggers an http request which automatically forwards your IP address and the user agent to etracker GmbH. The first action is that your IP address is automatically shortened. The software then pseudonymises the transmitted data solely in order to identify multiple uses during the session. After seven days, all the attributions to the session are deleted, and your statistical data are entirely anonymised. Etracker is a German company and processes your data exclusively on our behalf on protected servers. The data are not passed on to other third parties. The Federal Ministry for Economic Affairs and Climate Action is responsible for this processing of your data. You can contact our data protection officer at datenschutzbeauftragte@bmwk.bund.de. The legal basis is your consent in accordance with section 25(1) of the Act on Data Protection and the Protection of Privacy in Telecommunications and the Telemedia (TTDSG) in conjunction with Article 6(1)a of the General Data Protection Regulation (GDPR) and section 3(1) of the Act to Promote Electronic Government (EGovG). We have ensured that you can withdraw your consent at any time without any negative repercussions and wish to give you full control over the tracking on our website. We also provide a consent management function for this at the bottom of the page. You can use this to control whether etracker is enabled or not.
The Ministry also presents its work on this website in the form of videos. These are made available by the provider TV1 using JW Player. Please consent to the transmission of your IP address and other technical data to JW Player and allow JW Player to set cookies on your end device if you wish to view videos on our website. We also provide a consent management function for this at the bottom of the page. You can use this to control whether JW Player is enabled or not.
You can find detailed information on your rights and how we protect your privacy in our privacy policy.
Consent to the use of JW Player for video streaming
The Ministry also presents its work on this website in the form of videos. These are made available by the provider TV1 using JW Player. Please consent to the transmission of your IP address and other technical data to JW Player and allow JW Player to set cookies on your end device if you wish to view videos on our website. We also provide a consent management function for this at the bottom of the page. You can use this to control whether JW Player is enabled or not.
Everyone needs electricity and heat – but how to best organise transmission, distribution and storage? Go ahead and learn about the most intelligent designs and solutions!
Energy efficiency is key, both for the current building stock and for everything to be built from now on. Find out more about how the building stock can be made fit for future energy savings!
In tomorrow’s energy world, industries, commerce and agriculture use only a fraction of the energy they use today – with no negative effects on output.
Electromobility and new, alternative fuels are about to fundamentally change the transport sector. Find out more about the characteristics and prospects of these technologies!
In order to achieve an integrated energy system, power, heat and mobility need to be combined in a way that is both intelligent and sustainable. Take a look at relevant approaches in this field!
Are you looking for face-to-face meetings with German companies? Would you like to receive first-hand information? The German energy solutions initiative offers you a number of different possibilities to do so.
Sign up to our newsletter service to receive the latest information about German energy solutions and about opportunities to meet German business partners around the world.
All events
If you are interested in attending an event of the German energy solutions initiative, you will find the dates and locations in our calendar.
CSP power plants use the sun’s energy to generate industrial-scale amounts of electricity – and they can even store the enormous heat to be used later. Take a closer look!
Solar-thermal power plants convert solar radiation into heat and electricity. Reflectors (mirrors) are used to focus the sunlight onto absorbers, in which a carrier fluid or other medium is heated. This fluid serves to generate steam to drive a turbine, as in a conventional power plant. Widespread technologies include, for example, parabolic-trough power plants, solar tower power plants and dish-Stirling solar power systems.
Solar-thermal power plants require high levels of solar radiation. The most suitable locations for these are therefore regions in and around the Earth’s “sun belt” – up to 35 degrees latitude on either side of the equator. In 2016, the total installed capacity of solar-thermal power plants across the globe was approximately 5 GW, representing an almost four-fold increase on 2010 (see IRENA). Used in combination with a thermal storage solution, solar-thermal power plants are a cost-efficient means of providing large quantities of power and heat around the clock.
German companies have many years of experience with this technology. They are among the leading suppliers and service providers in the world for mirrors, absorbers, measuring instruments and management systems.
Solar-thermal power plants may differ in terms of the collector technology used: there are parabolic-trough power plants, tower power plants and dish-Stirling solar power systems.
In parabolic-trough power plants, sunlight is focused on an absorber with selective coating. With the heat thus produced, a heat transfer medium such as heat-transfer oil is used to generate steam at temperatures of 400° C and over. The concentrating mirror elements are curved in the shape of a parabola (parabolic trough concentrating collectors) or consist of individual segments of flat mirrors (Fresnel collectors).
In solar tower power plants, sunlight is focused by meansof an array of biaxial sun tracking flat mirrors, or heliostats, onto a relatively small absorber located on a solar tower. Temperatures of over 1,000° C are achieved as a result of the high concentration of solar radiation, thus enabling highly efficient two-stage energy conversion. Today, there are several different technological approaches based on various heat transfer mediums such as air, water, steam or molten salt and heat exchangers such as shell and tube heat exchangers, atmospheric or pressurised volumetric structures.
Heat exchangers are used in many ways to transfer heat between two mediums.
In many heat exchangers, a hot and cold medium are streamed past a common heat transfer surface simultaneously. The heat flow transferred through these heat transfer surfaces varies according to the heat transfer coefficient of the heat exchanger, the size of the heat transfer surface and the mean temperature differential between the two mediums.
There are various types of heat exchangers, depending on the design and mode of operation. These include pipe bundle heat exchangers, plate heat exchangers, double-pipe heat exchangers, lamella heat exchangers, fin-tube heat exchangers, heat pipe heat exchangers, spiral heat exchangers and rotation heat exchangers. Heat exchangers have a broad area of application. An important area is power plant technology such as CSP power plants. In this case, the heat exchanger transfers the heat from the cycle taking up the heat through sunlight, which could, for example, run on thermal oil, to another cycle running on water, which drives the electricity-generating turbine.
In Dish Stirling solar power systems, the working gas of a Stirling engine, such as hydrogen or helium, is heated to a temperature of up to 900° C by a biaxial sun-tracking reflector to allow high electric efficiencies of around 30 percent. Dish Stirling solar power systems with a power output of between 10 and 50 kW are especially suited to decentralised applications.
The energy conversion process particular to all solar-thermal power plants allows the use of thermal stores or co-firing of fossil or biogenic fuels to make power plant operation more flexible. This variant is also known as hybrid operation. The electricity production thus enabled at peak load times or around the clock can greatly boost the profitability of the power plants.
Solar gas-steam-turbine (combined cycle) power plants are considered to be efficient solar power plants. For a high level of efficiency when converting solar radiation into electricity, the radiation must be directly coupled into the gas turbine.
In solar hybrid combined cycle plants, air is heated to drive the gas turbine, in part by solar radiation, in part by natural gas. Solar gas-steam-turbine power plants comprise heliostats, a solar tower, receiver and a combined cycle power plant component. After being concentrated about 1,000 times by the array of heliostats, the solar radiation is absorbed in receivers. Here, the air is intensely heated. The higher the air temperature achieved, the less natural gas is required as fuel to further heat the air to the necessary turbine entry temperature.